If it's not what You are looking for type in the equation solver your own equation and let us solve it.
u^2=5
We move all terms to the left:
u^2-(5)=0
a = 1; b = 0; c = -5;
Δ = b2-4ac
Δ = 02-4·1·(-5)
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{5}}{2*1}=\frac{0-2\sqrt{5}}{2} =-\frac{2\sqrt{5}}{2} =-\sqrt{5} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{5}}{2*1}=\frac{0+2\sqrt{5}}{2} =\frac{2\sqrt{5}}{2} =\sqrt{5} $
| 3(x+40=27 | | 58=6v-2 | | 7(2c+5)=119 | | 126-u=188 | | 2/3=1/3-x/6 | | 30=-3n | | Y=8(x+1) | | -x/4-1.5=3/4 | | 16x−23=6x−13 | | 7x*3=24 | | 3/5=c/12 | | 6-4n=-2 | | 90+42+2x+12=180 | | 6-4x=7x−9x+10. | | 5x-2/3=43/3 | | 2=-u/125 | | -1/2x=-x+8 | | a-3/7=-4 | | 6-4+n=7 | | 2=u/125 | | y+5=2(3y) | | 51=9x-3 | | -14+9x=13 | | 9x-2=7x+5,x | | 0.66(6x-8)-(5x-8)=18 | | 3(x+7)+4=46 | | 12x=15x+39 | | 15x+3-108=180 | | (4x+9)=(11x-61) | | 2/3(6x-8)-(5x-8)=18 | | z=2z-56 | | 0.66666667(6x-8)-(5x-8)=18 |